A Measurable Selector in Kadison’s Carpenter’s Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Measurable Kesten Theorem

We give an explicit bound on the spectral radius in terms of the densities of short cycles in finite d-regular graphs. It follows that the a finite d-regular Ramanujan graph G contains a negligible number of cycles of size less than c log log |G|. We prove that infinite d-regular Ramanujan unimodular random graphs are trees. Through Benjamini-Schramm convergence this leads to the following rigi...

متن کامل

Brooks’s Theorem for Measurable Colorings

Throughout, by a graph we mean a simple undirected graph, where the degree of a vertex is its number of neighbors, and a d-coloring is a function assigning each vertex one of d colors so that adjacent vertices are mapped to different colors. This paper examines measurable analogues of Brooks’s Theorem. While a straightforward compactness argument extends Brooks’s Theorem to infinite graphs, suc...

متن کامل

The Halpern-läUchli Theorem at a Measurable cardinal

Several variants of the Halpern-Läuchli Theorem for trees of uncountable height are investigated. For κ weakly compact, we prove that the various statements are all equivalent, and hence, the strong tree version holds for one tree on any weakly compact cardinal. For any finite d ≥ 2, we prove the consistency of the Halpern-Läuchli Theorem on d many normal κ-trees at a measurable cardinal κ, giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Canadian Journal of Mathematics

سال: 2019

ISSN: 0008-414X,1496-4279

DOI: 10.4153/s0008414x19000373